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Abstract

A serially colicatcnated cc,de with intcrleaver consists of the caqcadc of an outer cncodcr, rm intcrlcaver

pcrlnut ing the outer code words bits, and an inner cncocler whose input words are the permuted outer code words,

l%e cotwtruction can t,c generalized to h cascaded encoders separated by h - 1 interlcavcrs. We obtain upper

hounds to the average maximur:)-likelihood bit error probability of serially concatenated block and convolutional

coding schemes. Then, we derive design guidelines for the outer and inner encOders that maximize the inter(eauer

gain and t}le asymptotic slope of the error probability curves. Finally, we propose a new, low-complexity iterative

decoding algorithm. Throughout the paper, extensive comparisons with Parallel concatenated convolutional codes

known as “ t nrbo codes” are performed, showing that the new scheme can offer superior performance.
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I. ACRONYMS

CC: Constituent Code.

PCCC: Parallel Concatenated Convolutional Code.

PCBC: Parallel Concatenated Block Code.

SCC: Serially Concatenated Code.

SCBC: Serially Concatenated Block Code.

SCCC: Serially Concatenated Convolutional Code.

ML: Maximum Likelihood.

IOWEF: Input Output Weight Enumerating Function.

C WEF: Conditional Weight Enumerating Function.

SISO: Soft Input Soft Output module.

SW-SISO: Sliding Window - Soft Input Soft Output module.

LLR: Log-Likelihood Ratio.

MAP: Maximum A Posteriori.

II. INTRODUCTION

In his goal to find a class of codes whose probability of error decreased exponentially at rates less than

capacity, while decoding complexity increased only algebraically, David Forney [1] arrived at a solution

consisting of the multilevel coding structure known as concatenated code. It consists of the cascade

of an inner code and an outer code, which, in Forney ’s approach, would be a relatively short inner

code (typically, a convolutional code) admitting simple maximum-likelihood decoding, and a long high-

rate algebraic nonbinary Reed-Solonlon outer code equipped with a powerful algebraic error-correction

algorithm, possibly using reliability information from the inner decoder.

Initially motivated only by theoretical research interests, concatenated codes have since then evolved as a

standard for those applications where very high coding gains are necdecl, such as (deep-)space applications

and many others. Alternative solutions for concatenation have also been studied, such as using a trellis-

coded modulation scheme as inner code [2], or concatenating two convolutional codes [3]. In the latter

case, the inner Viterbi decoder employs a soft-output decoding algorithm to provide soft-input decisions

to the outer Viterbi decoder. An interleaver was also proposed between the two encoders to se~)arate

bursts of errors produced by the inner decoder.

DIIAF1 Februnry 18, 1998
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We find then, in a “classical” concatenated coding schcmc, the main ingrcdiclits that formed the basis

for the invention of “turbo codes” [4], namely two, or more, constitucntcodcs (CCS) and an intcr(caver.

‘1’henovelty of turbo codes, however, consists of the way they usc the inter leaver, whit.1] is e[nbcclclerl

into the code structure to form an overall concatenated code with very large block length, and ill the

proposal of a parallel concatenation to achieve a higher rate for given rates of CCS. The latter advarltagc

is obtained using systematic CCS and not transmitting the information bits entering the second encoder.

In the following, we will refer to turbo codes w par-a~lel concatenated convohtional codes (PCCCS). The

so-obtained codes have been shown to yield very high coding gains at bit error probabilities in the range

10-5 – 10-7; in particular, low bit error probabilities can be obtained at rates well beyond the channel

cutoff rate, which had been regarded for long time as the “practical” capacity. Quite remarkably, this

performance can be achieved by a relatively simple iterative decoding technique whose computational

complexity is comparable to that needed to decode the two CCS.

In this paper, we consider the serial concatenation of interleaved codes or serially concatenated codes

(SCCS), called SCBC or SCCC according to the nature of CCS, that can be block (SCBC) or convo-

lutional codes (SCCC), For this class of codes, we obtain analytical upper bounds to the performance

of a maximum-likelihood (ML) decoder, propose design guidelines leading to the optimal choice of CCS

that maximize the inferdeaver gain and the asymptotic code performance, and present a new iterative

decoding algorithm yielding results close to capacity limits with limited decoding complexity. Preliminary

results have appeared in [5] and [6]. Extensive comparisons with turbo codes of the same complexity and
.

decoding delay are performed.

With this embodiment of results, we believe that SCCC can be considered as a valid, in some cases

superior, alternative to turbo codes.
.

In Section III, we derive analytical upper bounds to the bit error probability of both SCBCS and

SCCCS, using the concept of ‘;uniform interleaver” that decouples the output of the outer encoder from

the input of the itiner encoder. In Section IV, we propose design rules for SCCCS through an asymptotic
..

approximation of the bit error probability bound assuming long interleaves or large signal-to-noise ratios.

In Section- V we compare serial and parallel concatenations of block and convolutional codes in terms of.
maximum-likelihood analytical upper bounds. Section VI is devoted to the presentation of a new iterative

decoding algorithm and to its application to some significant codes. Performance compa;is;n between

S&3 C;and PCCCS under sirboptimum iterative de;oding algorithms are also presented in Section VI.

111. ANALYTICAL BOUNDS TO THE PERFORMANCE OF SERIALLY CONCATENATED CODES

A. A union bound to the bit error probability and some general warnings

Consider an (n, k) linear block code, and its Input-Outpui Weighi Enumerating Function (IOWEF),

rlefrnec] m
kn k

A(W, H) ~ ~ ~Au,,~Ww Hh = ~ WU’A(W, H)
W=oh=o W=o

(1)

where A,t,,h represents the number of code words with weight h generated by information words of weight

W. In ( 1 ) we Ilave also implicitly defined the conditional weight enumerating function (CWEL’)

A(u),}{) ~ ~Aw,hHh (2)

h=o
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as tlIc func~ion that, enumerates the weight distribution of code words generated by ill fornlation words of

a givcll weight w.

A linear block (or convolutional) code possesses the uniform error properly [7], slating that its word

and bit error probability performance can be evaluated under the assumption that the all-zero code word

has been transmitted. Assume then that the all zero code word Z. ha.. been transmitted, ancl define

the pairwise error event eoh(~) as the event in which the likelihood of a code word with weight h and

generated by an information word of weight w is higher than that of the all-zero code word Zo.

Using the union bound, the bit error probability under maximum likelihood soft decoding for binary

PSK (or binary PAM) transmission over an additive white Gaussian noise channel with t we-sided noise

power spectral density No/2 can be upper bounded as

k

Pb(e) < jj ~ }’b[t?I Xo, tkJh(W)]p[f!oh(W)]
h=lw=l

where Rc is the code rate, Eb is the energy per information bitl, and where we have defined

multiplicity

(3)

the bit error

(4)

Expressions (3) and (4) suggest that two ways can be followed to improve the bit error probability

performance: the first, leading to the more traditional concept of good (and asymptotically good) codes,

tries to increase the first, more significant weights h in (3), the second, forming the basis of turbo codes

and also of serially concatenated codes, aims at reducing the bit error multiplicities (4). To quote Dave

Forney ’s 1995 Shannon lecture: Rather than attacking error exponents, turbo codes attack multiplicities,

turning conventional wisdom on its head.

A more compact, but looser, upper bound, can be obtained from (3) using the inequality

~ erfc(x) < e-ra (5)

which yields
k

Pb(e) < ~ f[Nw, ~)]lJf=e-RcEb/No
W=l

(6)

From (3) and (6), we conclude that, in order to upper bound the bit error probability for any linear block

code, we need to evaluate its CWEF. As a consequence, also for concatenated codes with interleaves we

can use (3) and (6), provided that we are able to compute the CWEF of the overall code assuming that

the CWEFS of the constituent codes (CCS) are known. This has been done already for “turbo codes”, i.e.

parallel concatenated codes, in [8]. ln the following, we will show how to extend those results to the case

of serial concatenation.

Before starting the analysis leading to the evaluation of the CWEF of a serially coucatenatecl code

(S(X) with inter] eaver, a warning to the readers is necessary. Both (3) and (6) stem from the union

] It must be noted t}mt Eb/No is not the signal-to-noise ratio that can be measured in the channel, which, indmxf, is lower

by the factor R,.

l)RAFT February 18, 199S
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l)olliltl, st.:ttfillg tllatt41iep roljabilityo fallt)iollo ftJvcllt)s islcsstllallorc(lllal totllrs llllloft ll(?prol~al)ilities

of tllc individual cvmt,s. ‘1’he union hound is used extensively as all upper Iilnit to tile error probabilities

for digital Lranslnission systems. The sums of the individual probabilities in the right hand sides of (3) and

(6), however, are not probabilities themselves, ancl can tll(ls~slilllo large val~lt>s much greater than one.

In fact, it is common knowledge in the field that union bounds are very close to tile true probability in the

case of maximum likelihood decoding for mediurn-!ligh signal-to-noise ratios, whereas they tend to diverge

for low signal-to-noise ratios. A wiclely accepted rule of thumb is that the qignal-to-noise ratio where they

start to become unreliable is the one yielding the cut-off rate of the channel. The behavior of the bounds

is illustrated as a typical example in Figure 1, where we plot the bounds for two different rate 1/3 parallel

concatenated codes and compare them <with simulation results obtained using the suboptimum, iterative

decoding algorithm proposed to clecode turbo codes. Also drawn in the figure is the Eb/No corresponding

to the channel cutoff rate.

Some general comments, partly based on Figure 1, are appropriate:

● As previously anticipated, the upper bounds based on the union bound diverge at a signal-to-noise

ratio close to the channel cutoff rate. Obtaining tighter upper bounds capable of extending the

validity interval of the union bounds for +xmcatenated codes is an impmtant, and still widely open,

topic for research. The new bounds could be based on the technique successfully enl@oyed in [9] for

convolutional codes, or on the classical Gallager bound [10]. A successful application of the Gallager

bound to parallel concatenated codes with interleaves has been described in [1 1], where it is shown

that the new bound extends the validity of the union bound for some range of signal-to-noise ratios

below the channel cutoff rate, typically 0.5 dB. On the other hand, those attempts would still be based.
on the hypothesis of maximum likelihood decoding. Thinking of applying them to the suboptimum

iterative decoding seems not realistic.

o To obtain the divergence of the union bound one needs to compute a very large number of terms for

the summation in the right-hand side of (3), or (6), and this was indeed the case for the example to

which the curves of Figure 1 refer. In that case, however, the interleaver length N was limited to

100. When N becomes very large, as it is required to approach the channel capacity, only a limitecl

number of terms in the summations (3) and (6) can be obtainecl with a reasonable computational

complexity. As a consequence, the obtained upper bouncls are still very accurate above the channel

cutoff rate, but may not present the divergence at cutoff rate. In those cases, the reader should only

consider as reliable the bit error probability values above the cutoff rate, or perhaps half a dB below

it, according to the results of [1 1]. A way to overcome this drawback, and indeed to always show

the divergence of the union bound, has been proposed in [12]. It has, however, to rely on the looser

bound (6).

t The main tool used in this paper to analytically predict the performance and to find design rules

about the main CCS parameters is a union hound. We have seet~, on the other hand, that the union

bound is tight only for medium-high signal-to-noise ratios. One could then question the validity of

the approach, which suffers of the paraclox of using a bound not, applicable to very low signal-to-noise

ratios in order to design coding schemes intendecl to work near channel capacity.

We are conscious of this inconsistency, yet, for one hand, have simply nothing better to propose, and,

on the other hancl, we had widely verified by simulation t.llat the parallel concatenated codes designed

F.+ruary 18, 1998 DRAF’1’
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Fig. 1. Comparison of bit error probability curves obtained through union bounds and sin)ulations for two parallel concate-

nated convolutional codes over an additive Gaussian noise channel. Also indicated is the Eb/NO value corresponding to

the channel cutoff rate
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C~ (n,k,N=mp)
----- ----- ----- ----- ----- ----- ----- ----

I Outer code. Inner code ~I
lnterleaver

II
(p,k) @

1

length N=mp B (n,p)I1I II I------ ------ ------ ------ ------ ------ ---

Fig. 2. Serially concatenated (n, k, N = mp) block code

on the basis of our rules are indeed very good also at very low signal-to-noise ratios (see [13], [14]).

In the following of this paper, we will show that this heuristic validation of the design rules also holds

for serially concatenated codes with interleavers.

o The last ob~ervation concerns still another inconsistency, lying in the fact that we are using bounds

based on maximum likelihood decoding to design codes that are decoded according to a different,

suboptimum algorithm. Also in this case we invoke the heuristi~ validation stemming from a large

number of simulations, which show the convergence ‘of the simulated performance toward the ana-

lytical bounds. In Figure 1, where the simulated points have becm obtained with the suboptimum,

iterative decoding algorithm, we see a nice ‘example of this behavior.

B. Evaluating the bit error probability upper bound for serially concatenated block codes

We will now show how to apply’ the union bounds (3) and (6) to the case of serially concatenated codes

with interleaves. For simplicity of the presentation, we begin considering serially concatenated block

codes (SCBCS).

The scheme of two serially concatenated block codes is shown in Figure 2. It is composed of two cascaded

CCS, the outer (p, k) code Co with rate R: = k/p and the inner (n, p) code Ci with rate R: = p/n, linked

by an interleaver of length N = mp that is an integer multiple of the length p of the outer cocle words.

“1’hescheme works as follows: the mp bits of a number m of code words of Qle outer code are written into

the interleaver of length N = mp, and read in a different order according to the permutation performed

by the interleaver. The sequence of N bits at the output of the interleaver is then sent in blocks of length

p to the inner encoder.

The overall SCBC is then an (n, k) code with rate R: = R: x R: = k/n, and we will refer to it as the

(n, k, N = nip) code CS.

111 the following, we will derive an upper bound to the ML performance of the overall code C’s, ass~lnlillg

first that m = 1, and then extending the result to the general cam. We assume that the outer and inner

CCS are linear, so that also the SCBC is linear and the unijorm error property appliei, i.e. the bit error

probability can be evaluated assuming that the all-zero codt?, word has been transmitted.

In order to apply the upper houncls (3) and (6) to the SC13C, we need to evaluate the C\ VII;lr of the

code C’s, assuming that, we know the CWEFS of the CCS.

February 18, 199S DILAPT
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p= I/6

0101

0011
0101
1001
1o1o
1100
0110

Fig. 3. The action of a uniform interleaver of length 4 on sequences of weight 2

If p is low, we can compute the coefficients AW,h of the CWEF A(w, H) (2) by letting each individual

information word with weight w be first encoded by the outer encoder Co and then, after the p bits of the

outer code word have been permuted by the interleaver, be encoded by the inner encoder C~ originating

an inner code word with a certain weight. After repeating this procedure for all the information words

with weight w, we should count the inner code words with weight h, and their number would be the value

of AW,h. When k is large, or, in the case N = mp, when 771 is large, the previous operation becomes too

complex, and we must resort to a different approach.

The key point, here, is that we would like to obtain a simple relationship between the CWEFS of the

two CCS, an operation that is prevented by the fact that the information on the information word weight

is not enough to obtain the weight of the inner code word, which, instead, depends on the weight of the

outer code word and on the permutation induced by the interleave.

As in [8], [15], a crucial step in the analysis consists in replacing the actual interleave that performs

a permutation of the N input bits with an abstract interleaver callecl uniform inter-leaver, defined as a

()
N

probabilistic device that maps a given input word of weight 1 into all distinct , permutations of it

with equal probability P = 1/ (~) (see Figure 3).

Use of the uniform interleaver permits the computation of the “average” performance of the SCBC,

intended as the expectation of the performance of SCBCS using the same CCS, taken over the set of

all interleaves of a given length. A theorem proved in [8] guarantees the meaningfulness of the average

performance, in the sense that there will always be, for each value of the signal-to-noise ratio, at least one

particular interleaver yielding performance better than or equal to that, of the uniform interleave.

Let us define the IOWEF and the CWEF of the SCBC Cs as AC’(W, H) and AC’(W, ~f). ‘l’heir

definition and meaning are the same as in (1) and (2).

As seen, to apply the bounds (3) and (6) to the bit error probability we need to evaluate the CWEF

of the SCBC from the knowledge of the CWEII’S of the outer and inner codes, which we call AC” (w, L)

DRAFT February 1s, 199s
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and AC’(I, i/), where the first enumerates the weight distributions of the outer codt’ words gcncra!ml by

information words of weight w, and the second enumerates the weight distributions of the inlier code

worcls generated by outer code words of weight 1.

To do this, we exploit the properties of the uniform interleave, which transforms a code word of weight
N

()
1 at the output of the outer encoder into all its distinct I permutations. As a consequence, each code

worcl of the outer code CO of weight 1, through the action of the uniform interleaver, enters the inner
y

encoder generating
()

code words of the inner code C’i. Thus, the number A~sh of code words of the

SCBC of weight h associated with an information word of weight w is given by

N &l ~ AC,
,#jSh = x l,h

‘: “
1=0

()

From (7) we derive the expressions of the CWEF and IOWEF of the

N As, X AC’(i, ~)

xAC’(UJ, H) = ,=0 ‘ N ‘

() 1

(7)

SCBC as

(8)

N ACO(W, /) X AC’(l, H)
ACS(W, H) = ~

y
()

9 (9)

/=0

where ACO( W, i) enumerates the weight distributions of the information words that generate code words

of the outer code with a given weight 1.

Example 1

Consider the (7, 3) serially concatenated block code obtained by concatenating the (4,3) parity check

code to a (7,4) Hamming code through an interleave of length N = 4. The IOWEF ACO(W, L) and

Ac$ (L, H) of the outer and inner code are

ACO(kV, L) = 1 + VT’(3L2) + W2(3L2) + W3(L4)

AC*(L, H) = 1 + L(3H3 + H4) + L2(3H3 + 3H4) + L3(H3 + 3H4) + L4H7 ,

so that

ACO(W, O) = 1 Act(O, H) = 1

ACO(W, 1) = O Act(l,lf) = 3H3+H4

ACO(W, 2) = 3W + 3W2 AC’(2, H) = 3H3 + 3H4

ACO(W,3) = O AC1(3, H) = H3 + 3H4

ACO(W, 4) = W3 AC1(4, H) = H7 .

Through (9), we then obtain

4 ACO(W, I) X AC’(l, H)ACS(W, H) = ~

()
y

1=0

Fcbmary 18, I998

11 0. (3H3 + W)
= ~+—

4
+

+ (3 W+3W2) . (3H3+ 3H4) ~

6
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o .(H3 + 3}/4) W3 . H7
+

4
–+ ~

= 1 + W(l.5H3+ 1.5H4)+ w2(l.5f13+ 1.5//4) + w3H7.

o

Previous results (9) and (8) can be easily generalized to the more interesting case of an interleave with

length N being an integer multiple (by a factor m > 1) of the length of the outer code words. Denoting

by AC:(W, L) the IOWEF of the new (rnp, mk) outer code, and similarly by Ac~(L, H) the IOWEF of

the new (inn, rnp) inner code, it is straightforward to obtain

AC~(W, L) = [AC”(W, L)]m

(lo)ACP(L, H) = [AC’(L, H)]m .

From the IOWEFS (10), through (7), we obtain the CWEFS AC~ ( W, 1) and Acfl (1, H) of the new CCS,

and, finally, through (8) and (9), the CWEF and IOWEF of the new (n, k, N = rnp) SCBC C&

N A>; ~ A@”* (l, H)
Ac~(w, H)=~ ‘ N ,

1=0 () 1

N AC:(W, i) X ACT(I, H)
AC?(W, }{)= ~

N ‘“
1=0

() 1

(11)

(12)

Example 2

Consider a~aili the (lcs of Exanlple 1, linked by an interleave of length N = 4na, and use equations (1 1),

(2) and (3). The so obtained upper bound to the bit error probability is plotted in Figure 4 for various

values of the integer m. The curves show the inter-ieaver gain, defined as the factor by which the bit error

probability is decreased with the interleave length at a given signal-to-noise ratio. Contrary to parallel

concatenated block codes [8], the curves do not exhibit the interleave gain saturation. Rather, the bit

error probability seems to decrease regularly with m as m -1. We will explain this behavior in Section IV.

o

C. Serially concatenated convolutional codes

The structure of a serially concatenated convolutional code is shown in Figure 5. It refers to the case

of two convolutional CCS, the outer code Co with rate R: = k/p, and the inner code code C’i with rate

R: = p/n, joined by an interleaver of length N bits, generating an SCCC C’s with rate R: = k/~1. N will

be assumed to be an integer n~ultip1e2 of p. We assume, as before, that, the convolutional CCS are linear,

so that the SCCC is linear as well, and the uniform error property applies,

l’he exact analysis of this scheme can be performed by appropriate modifications of that described in

[8] for PCCCS. It requires the use of a hyper-irellis having as ltyper-staft+s pairs of states of outer and inner

2 Actllally, this ~On~traillt is ,,Ot necessary. We cm choose in fact inner and outer codes of fmY rates ~~ = kI /n! arid

}?: = kO/n O, constraining the int erleaJ,er to be an integer multiple of tllc mini lnunl common multiple of no and L.,, i.e.

N = 1( . mcm(no, k, ). ‘flis generalization, though, leads to more complicrd ccl expressions and is not considered in the

following.

DRAP’f’ February 1S, 1998
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Fig. 4. Analytical bounds for serially concatenated block code of Example 2 (SCBC1 in Table I)

codes. The hyper-states Sij and SI~~ are joined by a hyper-branch that consists of all pairs of pat~ls with

length N/p that join states si, SI of the inner code and states sj, s., of the outer code, respectively. Each

hyper-branch is thus an equivalent SCBC labeled with an IOWEF that can be evaluated as explained

in the previous subsection. From the hyper-trellis, the upper bound to the bit error probability can be

obtained through the standard transfer function technique employed for convolutional codes [10]. As

proved in [8], when the length of the interleaver is significantly greater than the constraint lengths of the

CCS, an accurate approximation of the exact upper bound consists in retaining only the branch of the

hyper-trellis joining the hyper-states SOO,SOO. In the following, we will always use this approximation.

Example 3

Consider a rate 1/3 SCCC formed by an outer 4-state convolutional code with rate 1/2 and an inner 4-state

convolutional cocle with rate 2/3, joined by a uniform interleavcr of length N = 200,400,600,800, 1000

and 2000 (SCCC1 of q’able 111).
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1
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I
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1
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Fig. 5. Serially concatenated (n, k, N) convolutional code

.

Both encoders are systematic and recursive and the generator matrices are reported in Table II, first

and third rows. Using the previously outlined analysis, we have obtained the bit error probability curves

shown in Figure 6. The performance shows a very significant interleaver gain, i.e. lower values of the bit

error probability for higher values of N. The interleaver gain seems to behave as N‘3. This behavior will

be explained in the next Section.

o

IV. DESIGN OF SERIALLY CONCATENATED CODES

In the previous section, we have presented an analytical bounding technique to find the ML performance

of SCBCS and SCCCS. For practical applications, SCCCS are to be preferred to SCBCS. One reason is

Lhat a-posteriori-probability algorithms are less complex for convolutional than for block codes, the second

is that the interleave gain can be greater for convolutional CCS, provided that they are suitably designed.

Hence, we deal mainly with the design of SCCCS, extending our conclusions to SCBCS when appropriate.

Before delving deeply into the analytical derivation, it is important to say a few words about the design

methodology. The performance of a concatenated code with interleaver, for both cases of parallel and

serial concatenation, depends on the constituent codes and on the interleave in a strict 1y interdependent

manner. The joint design of CCS and the interleaver, however, is a hopeless goal, and the only way to

achieve significantly good results seems to pass through a decoupled design, in which one first designs the

CCS, and then tailors the interlcaver on their characteristics. Our approach to achieve this goal resides

once more in the use of the uniform interleave, which yiel& to an average optimization of the CCs,

followed by a customization of the actual inter] eaver. Only the first step, i.e. the design of CCS, will be

treated here.

Consider the SCCC depicted in Figure 5. Its performance can be approximated by that of the equivalent

block code whose IOWI?F labels the branch of the hyper-trellis joining the zero states of outer and inner

code trellises. Denoting by .4CS ( w, H ) the C WII;F of this equivalent, block code, we can rewrit c the upper
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Fig. 6. Analytical bounds for the serially concatenated convolutional code of Example 3 (SCCC1 of ‘I’able III)

bound (6) as3

NR: N/R; NR:

~Acs(u7, H)lH=,-RcE,/No
~b(e) < ~ ~~: = ,Xxk j&O fGe-hRcEb’NO ‘

(13)

W=wo
c

m

where UJ~n is the minimum weight of an input sequence generating an error event of the outer code, and

hn, is the minimum weight4 of the code words of C.S. By error event of a convolutional code, we mean

a sequence diverging from the zero state at time zero and remerging into the zero state at some discrete

time j >0. For constituent block codes, an error event is simply a code word.

‘The coefficients A~sh of the equivalent block code can be obtained from (7), once the quantities A~~,

allcl A~~ of the CCS are known. To evaluate them, consider a rate R = p/n convolutional code C with

memorys v and its equivalent (N/R, N — pv) block code whose cocle words are all sequences of length

N/R bits of the convolutional code starting from ancl ending at the zero state. Ily definition, the code

3 In the following, a subscript “m” will denote “minimum”, and a subscript “M” will denote “maximum”.

4Since the input sequences of the inner code arc not unconstrained iid binary sequences. but, instead, code word< of the

outer code, h,,) can be greater tha[~ the imler .Ode free dist-e C$.

5 By ]nenlory, we mean the maxinlun] length of the shift registers contained ill the cncodcr.
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words of lhe equivalent block code arc concata~ations of error events of the convolutional codes. I,ct

A(l, [{, j) = ~ A[,h,j [[h (14)
h

bc the weight enulncrating function of st?clucnces of the convolutional code that concatenate j error events

with total input information weight 1. The coefficient A~,h,j represents the number of sequences of weight h,

input weight /, and nutnber of concatenated error events j. Its meaning is pictorially clarified in Figure 7,

where it can be noticed that, by ‘concatenated”, we mean actually that the j error events are adjacent,

in the sense that each one starts immediately where the previous ends, without any gap in between.

For N much larger than the memory of the convolutional code, the coefficient Afh of the CWEF’ of the

equivalent block code can be upper bounded bye

(15)

where ?ZM, the largest number of error events concatenated in a code word of weight h and generated by

a weight 1 information sequence, is a function of h and 1 that depends on the encoder, as we will see later.

1
. .

2 3

error event
~’: -:’W

—k lb

--------------- ..-. ~---
\

Codeword weight

j

XV’7.h

l’=]

Fig. 7. The meaning of the coefhcients Al,h,3

Let us return now to the block code equivalent to tf~e SCCC. Using

and j = ni for the outer and inner code, respectively, we can write

previous result (15) with j = no

6The ~lpper botllld j~ ~btained ~eglecti[lg the Iengtll of error events compared to N, auct asumiug that the num~cr of ‘aYs

j input secluences producing j error events can be arranged in a register of length fV is
()

Nlp . The S.atjo Nip derives frOnl
1

the fact that the code has rate p/n, and thIIs N bits correspond to N/p inputwords or, equivalently, trellis steps.

7 In the following, superscripts “o” and “i” will refer to quantities pertaining to outer and inner code, respectively.
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Substituting (hem into (7), we ol)tain an upper bound to the value of lhc cocflkients A~~h of the serially

concatenated block COCICequivalent to the SCCC in the form

(16)

where d; is the free distance of the outer code. By free distance dj, we mean the minimum Hamming

weight of error events for convolutional CCS, and the minimum Hamming weight of code words for block

Ccs.

To proceed further, we need to replace the three binomial coeflcients in (16). In order to obtain an

upper bound to the right-hand side of (16), we will replace the two binomials in the numerator using the

upper bound

()
: <$

and the binomial in the denominator using the lower bound8

y>()
(N-/+ l)’ N’

/! >~”

Notice that the bounds are tight for large N and for n, 1<< N, which will be seen to always happen in

our case.

Substitution of these bounds in (16) yields

(17)

Finally, substituting (17) into (13), gives the bit error probability bound in the form

Using expression (18) as the starting point, we will obtain some important design considerations. The

bound (18) to the bit error probability is obtained by adding terms of the first summation with respect

to the SCCC weights h. The coefhcients of the exponential in h depend, among other parameter, on ~.

For large N, and for a given h, the dominant coefficient of the exponential in h is the one for which the

exponent of N is maximum. Define this maximum exponent as

cr(h) S mW~x{nO+ ni – 1- 1} . (19)

Evaluating a(h) in general is not possible without specifying the CCS. Thus, we will consider two in~por-

tant cases, for which general expressions can be founcl.

8 Acttlal]y, ~ince in all ~a~e~ of jlltere~t, the summation index 1 is always kxs than N/2, we cOuld alsO ~lsc the tighter ‘~oufld

()
~ > (N’)/(l!2’).
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A. The ezponenl of N for the miutmum wczght

For large values of Eh/NO, the performance of tile SCC is dominated by the first terln of the summation

with respect to h, corresponding to the minimum value h = h,~. Remfmbcring that, by definition, n~

and nOMare the maximum number of concatenated error events in code words of the inner and outer code

of weights h,n and 1, respectively, the following inequalities holcl true:

(20)

(21)

where Im(hm) is the minimum weight 1 of code words of the outer code yielding a code word of weight hm

of the inner code, and [x] means “integer part of x“.

In most casesg, Im(hm) < 2dj, and hnJ < 2dj, so that n’~ = nfi = 1, and (22) becomes

cx(hm) = I–irn(hrn) s 1 –d; . (23)

The result (23) shows that the exponent of N corresponding to the minimum weight of SCCC code

words is always negative for d; > 2, thus yielding an interleaver gain at high Eb/No. Substitution of

the exponent a(h~) into (18) truncated to the first term of the summation with respect to h yielcls the

following result, asymptotic with respect to Eb/NO :

(24)

where the constant Bn, is”

and Wnl is the set of input weights w that generate code words of the outer code with weight l,,l(h,,, ).

Expression (24) suggests the following conclusions:

● For the values of Eh/NO and N where the SCCC performance is dominated by its free distance
d~S = h m, increasing the interleaver length yields a gain in performance.

o To increase the intcrleaver gain, one should choose an outer code with large d;.

● To improve the performance with Eb/NO, one should choose

such that hm is large.

These conclusions do not depend on the structure of the CCS, and

nonrecursive encoder.

an inner and outer code combination

thus they yield for both recursive and

The curves of Figure 4 showing the performance of the various SC13CS of Example 1 with increasing

interleaver length, however, also show a different, phenomenon: for a given ~~h/NO, there is a value of h’

‘,~l,is ~il] be sc~,, i,, ttl~ ~X~nIplCS that follow. and corresponds to the most favorable situatiO1l.
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almvc whicl) the hound diverges. In othor words, there seem to hc coefficients of (Illc oxponcnts in h, for

h > /L,,, t,llat increase with N.

‘1’oinvestigate this phenomenon, we will evaluate the largest exponciit of N, dctined as

(25)

This exponent will permit to find the dominant contribution to the bit error probability for N x M.

B. The maximum exponent of N

We need to treat the cases of nonrecursive and recursive inner encoders separately. As we will see,

nonrecursive encoders and block encoders show the same behavior.

D. 1 Block and nonrecursive convolutional inner encoders

Consider the inner encoder and its impact on the exponent of N in (25). For a nonrecursive inner

encoder, we have n~ = 1. In fact, every input sequence with weight one generates a finite-weight error

event, so that an input sequence with weight 1 will generate, at most, 1 error events corresponding to the

concatenation of 1 error events of input weight one. Since the uniform interleaver generates all possible

permutations of its input sequences, this event will certainly occur.

Thus, from (25) we have

cl~=nfi-l~o,

and interleaving gain is not allowed. This conclusion holds true for both SCCCS employing nonrecursive

inner encoders and for all SC13CS, since block codes have code words corresponding to input words with

weight equal to one.

For those SCCS we always have, for some h, coefficients of the exponential in h of ( 18) that increase with

N, and this explains the divergence of the bound arising, for each ~b/NO, when the coefficients increasing

with N become dominant.

B.2 Recursive inner encoders

For recursive convolutional encoders, the minimum weight of input sequences generating error events is

2 (see [16], [13]). As a consequence, an input sequence of weight 1 can generate at most 1~~ error events.

Assuming that the inner encoder of the SCCC is recursive, the maximum exponent of N in (25) becomes

(26)

The maximization involves / and w, since nfif depends on both quantities. In fact, remembering its

definition as the maximum number of concatenated error events of code words of the outer code with

weight 1 generated by input words of weight w, it is straightforward to obtain

Substituting now the last inequality (27) into (26) yields

(27)

(2/3)
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To perform the maximization of the RfIS of (28), consider first the case

1 = qd~ , q integer ,

so that

-v{+w’} (29)

The RHS of (29) is maximized, for d~ z 2, by choosing q = 1. On the other hand, for

the most favorable case is 1 = qd; , which leads us again to the previously discussed situation. Thus, the

maximization requires 1 = d;. For this value, on the other hand, we have from (27) n$~ s 1, and the

inequality becomes an equality if w c WJ, where Wf is the set of input weights w that generate code

words of the outer code with weight 1 = d;. In conclusion, the largest exponent of N is given by

d;+l

[J
~M=— — .

2
(30)

The value (30) of ~M shows that the exponents of N in (18) are always negative integers. Thus, for all

h, the coefficients of the exponents in h decrease with N, and we always have an interleaver gain.

Denoting by d~,e,,, as in [8], the minimum weight of code words of the inner code generated by weight-2

input sequences, we obtain a different weight h(~~) for even and odd values of d;.

d; even

For d; even, the weight h(cIM) associated to the highest exponent of N, is given by

since it is the weight of an inner code word that concatenates d; /2 error events with weight all,.,,.

Substituting the exponent @&finto (18), approximated only by the term of the summation with respect

to h corresponding to h = h(~kf), yields the following result, asymptotic with respect to ~b/No :

where

(31)

(32)

In (32), w~f,j is the maximum input weight yielding outer code words with weight equal to d;, and Nj’

is the number of such code words.

d; odd

For d; odd, the value of h(aLj ) is given by

(33)
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wlwm h!,:) is lhc mininlum weight

lJI this casc, in fact,, wc have
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ofscqucllct?s of the inner code gcllerahxl by a weight 3 input sequence.

d~–1
nt~ = —

2

concatenated error events, of which n~f – 1 generated by weight-2 input secluences and OIICgenerated by

a weight-3 input sequence.

Thus, substitutingt heexponent cr~~ i]lto(l 8)approxi11~atcd bykccl)il~g ol~lytlle terl~lof tllesulnmatiorl

with respect tohcorresponding toh = h(a,w) yields the following reslllt, ~ylllptotic witllresI~ect to Eb/NO

where

d“+l

{

Pb(t?) &iddN-+eXp – (d; – 3)4,,,

2 1}+t$) h!c&/h’o , (34)

&dd =
(dj)%dj! = (d;)d~d;! ,

WA&d;,l S WM,JN; — do-l (35)

kp~[(dj – 3)/2]! wCW/ kp~[(dj – 3)/2]!

In both cases of d; even and odd, we can draw from (31) and (34) a few important design considerations:

*

*

*

●

in contrast with the case of block codes and nonrecursive convolutional inner encoders, the use of a

recursive convolutional inner encoder always yields an interleaver gain. As a consequence, the first

design rule states that the inner encoder must be a convolutional recursive encoder.

The coefhcient h(cr~), which multiplies the signal-to-noise ratio Et, /No in (18), increases for increasing

values of dj,e~,, Thus, we deduce that the effective free distance of the inner encoder must

be maximized. Both this and the previous design rule had been stated also for PCCCs1° [13]. As

a consequence, the recursive convolutional encoders optimized for use in PCCCS (see Tables in [13],

[17]) can be employed altogether as inner CC in SCCCS.

From (33), however, we can infer that also the parameter h$), namely the minimum weight of inner

code sequences generated by weight 3 input sequences, is important for odd values of d;. This may

lead to a choice for the inner code that is in partial disagreement with the design rules obtained for

PCCCS in [13]. Those design rules stated that optimum constituent encoders for PCCCS should have

a feedback connection made according to a primitive polynomial. For SCCCS with odd d;, it is often

convenient to choose an inner encoder whose feedback polynomial contains (1 + 1)) as a factor; this

choice, in fact, eliminates all error events of the inner code originated by odd-weight input sequences,

thus yielding hy) = cm. As a consequence, the parameter h(aM ) would not be obtained from (33)

anymore, but, instead, from an input sequence to the inner code with weight larger than dj t yielding

a greater value for h(ahf). In Section VI, we will see an example of code designed according to that

procedure.

The int.erleaver gain is equal to N- ~“ for even values of d; and to N-~ for odd values of d?. As a

consequence, we should choose, compatibly with the desirecl rate RC of the SCCC, an outer code

with a large and, possibly, odd value of the free distance.

As to other outer code parameters, N~ and LUAf,jshould be minimized. In other words, Wc should

have the minimum number of input sequences generating free distance error events of the outer cocle,

10For PCCCS, bowevcr, botb C(3S bad to comply with t hose design rules.
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F
Code Outer code Innfx code SCBC

Code type ?11;, do Code type w: d; d:,.,, h“, ~(hn,)

Scllcl Parity check (4,3) ] 2
Hamming (7,4) 1 3 3 3 -1

SCBC2 Parity check (.5,4) 1 2 Bell (15,5) 1 7 7 7 -1

SC1]C3 IIanlming (7,4) 1 3 BCI1 (15,7) 1 5 5 5 -2

TABLE I

DESION PARAMETERS OF CONSTITUENT CODES AND SERIALLY CONCATENATED BLOCK CODES FOR THREE SERIALLY

CONCATENATED BLOCK CODES

and their input weights should be minimized. Since nonrecursive encoders have error events with

w = 1, and, in general, less input errors associated with error events at free distance [18], it can

be convenient to choose as outer code a nonrecurdve encoder with minimum N; and w~,~.

Conventional nonrecursive convolutional codes found in books (see for example [7] ) are appropriate.

C. Examples confirming the design rules

To confirm the design rules obtained asymptotically, i.e. for large signal-tonoise ratio and large in-

terleave lengths N, we evaluate the upper bound (3) to the bit error probability for several block and

convolutional SCCS, with different interleave lengths, and compare their performance with those pre-

dicted by the design guidelines.

C. 1 Serially cone.at enated block codes

We consider three different SCBCS obtained as follows: the first is the (7,3, N = 4m) SCBC described

in Example 2, the second is a ( 15,4, N = 5rn) SCBC using as outer code a (5, 4) parity-check code and

as inner code a (15,5) BCH code, and the third is a (15,4, N = 7rn) SCBC using as outer code a (7,4)

Hamming code and as inner code a (15,7) BCH code. Note that the second and third SCBCS have the

same rate, 4/15.

The outer, inner, and SCBC code parameters introduced in the design analysis of Section IV are listed

in Table I.

In Figs. 4, 8, and 9, we plot the bit error probability bounds for the SCBCS 1,2 and 3 of Table I.

Code SCBC1 has d; = 2; thus, from (23), we expect an interleave gain going as N-1. This is confirmed

by the curves of Figure 4, which, for a fixed and suflciently large signal-to-noise ratio, show a decrease

in P~(e) of a factor 10, when A’ increases from 4 to 40, from 40 to 400 and from 400 to 4000. Moreover,

curves of Figure 4 show a divergence of the bound at higher Eb/NO for increasing N. q’his is clue to

coefficients of terms with h > h,,, in (18) that increase with N, whose influence become more important

for larger N.

Code SCBC2 has d; = 2; thus, from (23), we expect the same interleaver gain as for SCBC1, i.e.

N-1. This is confirmed by the curves of Figure 8, which also show the bound divergence predicted in the

analysis of Section IV.

Code SCBC3 has d; = 3; thus, from (23), we expect a larger interleave gain than for SCBC 1 and

SCBC2, i.e. N-2. This is confirmed by the curves of l’igurc 9, which, for a fixed and sufficiently large
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Code description C(D)

Rate 1/2 R.

Rate 1/2 NR

Rate 2/3 R

Rate 2/3 NR

GBN~RATINGMATRICESFOR

[1!*]

[ 1+ D+D2, 1+D2

[

1, 0, ‘*Z

0, 1, * 1
[l+ZI, D, 1 -

l+D, 1, 1+~.

TABLE II

THE CONSTITUENT CONVOLUTIONAL CODES

—
Code Outer code Inner code Sccc

Code WA d~

1

Code WA d; d:,<,, hrn ~(hm) h(ffM) ~M

Scccl Rate 1/2 R 2 5 Rate 2/3 R 2 3 4 5 -4 7 -3

SCCC2 Rate 1/2 R 2 5 Rate 2/3 NR 1 3 4 5 -4

SCCC3 Rate 1/2 NR 1 5 Rate 2/3 R 2 3 4 5 -4 7 -3

SCCC4 Rate 2/3 NR 1 3 Rate 1/2 R 2 5 6 5 -2 7 -2

TABLE HI

DESIGN PARAMETERS OF CONSTITUENT CODES AND OF SERIALLY CONCATENATED CONVOLUTIONAL CODES FOR FOUR SERIALLY

CONCATENATED CONVOLUTIONAL CODES

signal-to-noise ratio, show a decrease in pb (e) of a factor 100, when N increases from 7 to 70, from 70 to

700 and from 700 to 7000. As to the bound divergence, we notice a slightly different behavior with respect

to previous cases. The curve with N = 7000, in fact, denotes a strong influence of coefficients increasing

with N for ~b/NO lower than 7 dE1.

C,2 Serially concatenated convolutional codes

We consider four different SCCCS obtained as follows: the first, SCCC1, is a (3,1 ,N) SCCC (the same

of Example 3), using as outer code a 4-state, (2,1) recursive, systematic convolutional encoder and as

inner code a 4-state, (3,2) recursive, systematic convolutional encoder. The second, SCCC2, is a (3,1 ,N)

SCCC, using as outer code the same 4-state, (2,1) recursive, systematic convolutional encoder of SCCC1,

and as inner code a 4-state, (3,2) nonrecursive convolutional encoder. The third, SCCC3, is a (3,1 ,N)

SCCC using as outer code a 4-state, (2,1) nonrecursive, convolutional encoder, and as inner cocle the

same 4-state, (3,2) recursive, systematic convolutional encoder of SCCC1. The fourth, SCCC4, finally,

is a (6,2, N) SCCC, using as outer code a 4-state, (3,2) nonrecursive convolutional encoder, and as inner

code a 4-state, (6,3) recursive, systematic convolutional encoder, obtained by concatenating three equal

4-state (2,1 ) recursive, systematic convolutional encoders.

The outer, inner, and SCCC code parameters introduced in the design analysis in %ct.ioll

in Table 111. In this table, the CCS are identitlecl through the description of Table 11.
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Fig. 8. Analytical bounds for the serially concatenated block code SCBC2

In Figs. 6,10, 11 and 12, we plot the bit error probability bounds for the SCCCS 1,2,3 and 4 of Table 111,

with interleaver lengths N = 200,400,600,800,1000, 2000. In Fig. 12, which refers to the code SCCC4 of

Table III, the values of the interleaver length are different, i.e. N = 150,300,450,600,750, 1500. This is

due to the fact that the outer code for SCCC4 has a rate 2/3, instead of 1/2, and thus the interleaver

length must be changed in order to guarantee the same input delay for all SCCCS.

Consider first the SCCCS employing aa inner CCS recursive, convolutional encoders as suggested in

Section IV. They are SCCCI, SCCC3, and SCCC4.

Code SCCC1 has d; = 5; thus, from (34), we expect an interleave gain behaving as N-3. This is fully

confirmed by the curves of Figure 6, which, for a fixed and sufficiently large signal-to-noise ratio, show

a decrease in ~b(e) by a factor 1000, when N increases from 200 to 2000. For an even more accurate

confirmation, one can compare the interleaver gain for every pair of curves in the figure. The curves of

Figure 6 do not show a divergence of the bound at higher ~b/NO for increasing N. This is due to the

choice of a recursive encoder for the inner code, which guarantees that all coefllcients a(h) decrease with

N.

Code SCCC3 differs from SCCC1 only in the choice of a nourecursive outer encoder, which is a 4-
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Fig. 9. Analytical bounds for the serially concatenated block code SCBC3

state encoder (see Table III) with the same d; as for SCCC1, but with WA = 1, instead of U& = 2.

From the design conclusions, we expect a slightly better behavior of this SCCC. This is confirmed by the

performance curves of Figure 11, which present the same interleave gain as those of SCCC1, but have a

slightly lower pa(e) (the curves for SCCC3 are translated versions of those of SCCC1 by 0.1 d13).

Code SCCC4 employs the same CCS as SCCC2, but reverses their order. It uses as outer code a rate

2/3 nonrecursive convolutional encoder, and as inner code a rate 1/2 recursive convolutional encoder. As

a consequence, it has a lower d; = 3 and a lower @&f= 2. Thus, from (34), we expect a lower interleave

gain than for SCCC1 and SCCC3, as N-2. This is confirmed by the curves of Figure 12, which, for a

fixed and sufl_iciently large signal-to-noise ratio, show a decrease in Pb(c) of a factor 100, when N increases

from 150 to 1500. On the whole, SCCC4 100SCSmore than 2 dB in coding gain with respect to SCCC3.

This result confirms the design rule suggesting the choice of an outer code with as large d; M possible.

Finally, let us consider code SCCC2, which differs from SCCC1 in the choice of a nonrecursive inner

encocler, with the same parameters but with the crucial difference of u~~,, = 1. Its bit error probability

cur~’es are shown in Figure 10. They confirm the predictions of Section IV. We see, in fact, that for

low signal-to-noise ratios, say below 4 dB, almost no interlcavcr gain is obtained. This is because the
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Fig. 10. Analytical bounds for the serially concatenated convolutional code SCCC2

performance are dominated by the exponent h(a~), whose coefficient increases with N. On the other

hand, for larger signal-to-noise ratios, where the dominant contribution to Pb(e) is the exponent with the

lowest value h~, the interleaver gain makes its appearance. From (24), we foresee a gain a-s N‘4, meaning

4 orders of magnitude for N increasing from 200 to 2000. Curves in Figure 10 show a smaller gain (slightly

higher than 1/1000), which is on the other hand rapidly increasing with ~b/NO.

V. COMPARISON BETWEEN PARALLEL AND SERIALLY CONCATENATED CODES

ln this section, we will use the bit error probability bounds previously derived to compare the perfor-

mance of parallel (“turbo cocles”, [8]) and serially concatenated block and convolutional cocles.

A. $’erially and parallel concatenated block codes

‘1’oobtain a fair comparison, we have chosen the following PCIIC and SCJ3C: the PCBC has parameters

( 11,3, N = 3m) and employs two equal (7,3) systematic cyclic cocles with generator g(D) = (1+ D)( 1 +

D -t D3); the SC13C, instead, is a (15m, 4m, N = 7rn) SCCC, obtained by the concatenation of the (7,4)

}Iamming code with a (15,7) 13CII code.

They have almost the same rate (I& = 0.266, R: = 0.273), and have been compared choosing tl~e

I)R,\rw February 1S, 1998
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Fig. 11. Analytical bounds for the serially concatenated convolutional code SCCC3

interleaver length in such a way that the decoding delay due to the interleaver, measured in terms of

input information bits, is the same. Since the interleaver acts on information bits for the PCBC, its

length is equal to m times the length of the information word, i.e. N = 3m. For the SCBC, instead, the

interleaver acts on the code words of the outer code, and, as a consequence, to yield the same decoding

delay measured as number of information bits, its length must be that of the PCBC divided by R:. As

an example, to obtain a delay equal to 12 input bits, we must choose an interleaver length N = 3m = 12

for the PCBC, and N = 7rn = 12/R~ = 21 for the SCBC.

The results are reported in Figure 13, where we plot the bit error probability bounds versus the signal-

to-noise ratio Eh/NO for various input delays. The results show that, for low values of the input delay, the

performance is almost the same. On the other hand, increasing the delay (and thus the interleaver length

N) yields a significant interlcavcr gain for the SCBC, and almost no gain for the PCFIC. The difference

in performance is 3 d13 at ~b(e) = 10-6 in favor of the SCBC.
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Fig. 12. Analytical bounds for the serially concatenated convolutional code SCCC4

B. Serially and parallel concatenated convolutional codes

To obtain a fair comparison, we have chosen the following PCCC and SCCC: the PCCC is a rate 1/3

code obtained concatenate ing two equal rate 1/2, 4-state systematic recursive convolutional encoclers with

generator matrix as in Table 11, first row. The SCCC is a rate 1/3 code using as outer code the same

rate 1/2, 4-state code as in the PCCC, and, as inner encoder, a rate 2/3, 4-state systematic recursive

convolutional encoder with generator matrix as in Table II, third row. Also in this case, the interleaver

lengths have been chosen so as to yield the same decoding delay, due to the interleaver, in terms of

input, bits. The results are reported in Figure 14, where we plot the bit error probability versus the

signal-to-noise ratio Eb/NO for various input Cielays.

The results show the great difference in the interleaver gain. In particular, the PCCC shows an inter-
.

leaver gain going as N-], whereas the interleaver gain of the SCCC, as from (34), goes as N-~ = N-3,

being the free distance of the outer code equal to 5, This means, for ~b(e) = 10-11, a gain of more than

2 d13 in favour of the SCCC.

Previous comparisons have shown that serial concatenation is advantageous with respect to parallel

concatenation, in terms of MI, performance. For medium-long interlcaver lengths, this significant result

I)[lAI”l’ February 18, 1998
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Fig. ]3. Comparison of serially concatenated block codes and parallel concatenated block codes with various interleaver

lengths, chosen so as to yield the same input decoding delay

remains a theoretical one, as ML clecoding is an almost impossible achievement. For parallel concatenated

codes (“turbo codes” ), iterative decoding algorithms have been proposed, which yield performance close

to optimum, with limited complexity. ]n the following section, we will present a new iterative decoding

scheme capable of decoding serially concatenated codes, and prove, with several examples of applications,

that the performance gain with respect to parallel concatenation is maintained.

VI. ITERATIVE DEcoDING OF SERIALLY CONCATENATED cODEs

In this section, we present a new iterative algorithm for decoding serially concatenated codes, with

complexity not significantly higher than that needed to separately decode the two CCS. Because of the

importance in applications, all examples will refer to !XXXs, although the decoding algorithm can be

applied to SCBCS as well.

The core of the new decoding procedure consists of a block called S1S0 (Soft-Input Soft-Output). It is

a four-port device, which accepts as inputs the probability distributions (or the corresponding likelihood

ratios) of the information and code symbols labeling the edges of the code trellis, ancl forms as outputs

an update of these probability distributions based upon the code constraints. The block S1S0 is used
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Fig. 14. Comparison of serially concatenated convolutional codes and parallel concatenated convolutional codes with 4-state

convolutional codes

within the iterative decoding algorithm as shown in Figure 15, where we also show the block diagram of

the encoder to clarify the notations.

We will first explain in words how the algorithm works, according to the blocks of Figure 15. Succes-

sively, we will give the input-output relationshipsof the block S1S0.

The symbols J(o; 1) and J(; O) at the input and output ports of S1S0 refer to the logarithmic likelihood

ratios (LLRs)ll, unconstrained when the second argument is 1, and modified according to the code

constraints when it is O. The first argument u refers to the information symbols of the encoder, whereas

c refers to code symbols. Finally, the superscript o refers to the outer encoder, and i to the inner encoder.

The LLRs are defined as

A(X; .) 2 log [1P(x; .)

P(zref; .)
(36)

When z is a binary symbol, “O” or “l”, xref is generally assumed to be the “l”. When z belongs

1I Wheli ~he symbols are biIlarY, ~I1]Y ‘>I,e LL~~ is needed; when the symbols belong 10 an L-ary alphabet, ~, - 1 LLfls are

mcluired.
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Fig. 15. Block diagrams of the encoder and iterative decoder for serially concatenated convolutional codes

to an L-ary alphabet, we can choose as Xrer each one of the L symbols; a common choice for hardware

implementation is the symbol with the highest probability, so that one LLR will be equal to zero and all

others negative numbers.

Differently from the iterative decoding algorithm employed for turbo decoding, in which only the LLRs

of information symbols are updated, we must update here the LLRs of both information and code symbols

based on the code constraints.

12 the block “SIS() Inner” is fed with the demodulatorDuring the first iteration of the SCCC algorithm ,

soft outputs, consisting of the I.LRs of symbols received from the channels, i.e. of the code symbols of the

inner encoder. The second input J(ui; 1) of the S1S0 Inner is set to zero during the first iteration, since

no a-priori information is available on the input symbols Ui of the inner encoder.

The LLRs A(ci; 1) are processed by the S1S0 algorithm, which computes the extrinsic LLRs of the

information symbols of the inner encoder ~(vi; O) conditioned on the inner code constraints. The extrinsic

LI,Rs are passed through the inverse interleaver (block labeled “n- l“ ), whose outputs correspond to the

LLRs of the code symbols of the outer code, i.e.

7r-l[A(u’;o)] = A(cO; 1)

These LLRs are then sent to the block “S1S0 Outer” in its upper entry, which corresponds to code

symbols. The S1S0 Outer, in turn, processes the LLRs ~(c”; 1) of its unconstrained code symbols, and

computes the LLRs of both code and information symbols based on the code constraints. The input

127’0 qiltlpli fy the description, we ~ss,lnrc for now t}mt t})e inter] eavcr acts on symbols inst cad of bits. In the actual dCXOdCI’,

wc deal with bit LI,Rs and bit intcrlcaver, as it will bc seen later.
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A(ItO; f) of the S[S0 Outer is always set to zero, which implies assun]ing cqIIally likely transllliltd source

information syInbols. ‘Iibe output, LLRs of information symbols (which yield the a-posleriori L1,Rs of the

SC(X information symbols) will be used in the final iteration to recover the information bits. On the other

hand, the LLRs of outer code symbols, after interleaving are fed back to the lower entry (corresponding

to information symbols of the inner code) of the block S1S0 Inner to start the sccotld iteration. In fact

wc have

7r[A(c”; o)] = A(lt; 1)

A. The input-output relationships for the block SISO

The block S1S0 has been described in [19]. It represents a slight generalization of the BCJR algorithm

(see [20], [21], [24]). Here, we will only recall for completeness its input-output relationships. They will

refer, for notations, to the trellis section of the trellis encoder, assumed to be time invariant as we deal

with convolutional codes, shown in Figure 16, where the symbol e denotes the trellis edges, and where we

have identified the information and code symbols associated to the edge e as u(e), c(e), and the starting

and ending states of the edge e as ss(e), sE(e), respectively.

The block S1S0 works at symbol level, i.e., for an (n, p) convolutional code, it operates on information

symbols u belonging to an alphabet with size 2P and on code symbols belonging to an alphabet with size

2n. We will give the general input-output relationships, valid for both outer and inner S1S0s, assuming

that the information and code symbols are defined over a finite time index set [1, . . . . K].

Attimek, k=l , . . . . K, the output extrinsic LLRs are computed as

Ak(c;o) = ,,c(e)=cmax “{a~-.l[ss(e)] + ~~[u(e); I] + ih[sE(e)l}+ k

~k(tt;O) = ~,~~=u *{a~_l[ss(e)] + Ak[c(e); 1] + /3~[sE(e)]} + h“

(37)

(38)

The name eztrinsic given to the LLRs computed according to (37) and (38) derives from the fact that the

evaluation of Jk(c; O) (and of ~k(~; O)) does not depend on the corresponding simultaneous input AA(c; 1)

(and Jk(u; 1)), so that it can be considered as an update of the input LLR based on information coming

from all homologous symbols in the sequence, except the one corresponding to the same symbol interval.

The quantities ak(. ) and @k(.) in (37) and (38) are obtained through the forward and backward recur-

sions, respectively, as

Crk(s.) = KIaX *{ak-l[Ss(e)] +Ak[u(e);z]+ ~k[c(e);~]} ,k = 1,.. .,if -1 (39)
e:s E(e)=8

with initial values:

{

o
(lo(s) =

–m

{
/5’~(Si) = 0

–cm

The quantities hC, hU in (37) and (38) are normalization

“1’hc operator max” performs the following operation

S=so

otberwisc

s=SK

otherwise.

constants.

(40)
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Fig. 16. Trellis section defiIlirlg thenotations used fortlle description of the SISO algorithm

[1
J

max”(aj)e log ~e”~ (41)
j j=l

This operation, a crucial one in affecting the computational complexity of the S1S0 algorithm, can be

performed in practice (see [22], [23]) w

max”(clj) = nl?X(Uj) + fS(al, a2, . . .! (SJ) (42)
] 1

where c$(al,az, . . ., aJ)kaCOrreCtb~ term that can beconlputed recursively using asingle-elltry look-up

table [22], [23].

Theprevious description of theiterativec lecoder assunle dthatal loperation swereperformeclat symbol

level. Quite often, however, theinterleaver operatesat hitlevel to be more effective. This istllec&~e, for

example, of all results presented in Sections Ii I, IV, and V.
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‘1’IIIIs, to performs hit interleaving, we nceci to transform tlte synltm] extrinsic [41,1?s ohtaimxl at the

output of the first S1S0 into extrii)sic bit I,LRs, before they enter the dcintcrlcavcr. After dcinterlcaving,

the bit LLRs need to bc compacted into symbol L1,Rs before entering the second S1S0 block, and so on.

These operations arc performed under the assumption that the bits forming a symbol are independent,

Assuming an (n, p) code, and denoting with u = [ul, . . . . UP] the information symbol formed by p

information bits, the the extrinsic LLR Ai of the i-th bit ~i within the symbol u is obtainecl as

Ai(U; O) = max * [A~(U; O) -t- A(U; 1)] – “nl;~l” [J(U; O) + A~(U; Z)] – ~i(U; 1)
U:u, =u

(43)

Conversely, the extrinsic LLR of the symbol u is obtained from the extrinsic LLRs of its component

bits ~i aS

A(U) = ~ .Ai(U) (44)
i=l

As previous description should have made clear, the S1S0 algorithm requires that the whole sequence

had been received before starting. The reason is due to the backward recursion that starts from the

(supposed known) final trellis state. As a consequence, its practical application is limited to the case

where the duration of the transmission is short (A’ small), or, for A’ long, when the received sequence can

be segmented into independent consecutive blocks, like for block codes or convolutional codes with trellis

termination [14]. It cannot be used for continuous decoding. This constraint leads to a frame rigidity

imposed to the system, and also reduces the overall code rate, because of trellis termination.

A more flexible decoding strategy is offered by modifying the algorithm in such a way that the S1S0

module operates on a fixed memory span, and outputs the smoothed probability distributions after a

given delay D. This algorithm, which we have called the sliding window sojl-inprd soft-output (SW-SISO)

algorithm, is fully described in [23]. In the following simulation results, the SW-SISO algorithm has been

applied.

B. Applications of the decoding algorithm

We will now use the decoding algorithm to confirm the design rules presented before, and to show

the behavior of SCCC in the region of low signal-to-noise ratios (below cutoff rate). Since in this region.
analytical bounds fail to give significant results, no meaningful quantitative com .~isons~an be p“erfcwmed

<>

between simulated and analytical performance’. However, WLwill show that t e h~erarchy ~ the simulation
. L

results agrees with the design considerations that had been based on the an lysis.

The following aspects will be considered:

o the behavior of the decoding algorithm versus the number of decoding iterations,

o the behavior of the decoding algorithm versus the interleaver Icngth.

* the effect of choosing a nonrecursive inner code,

. the SCCC behavior for very low signal-to-noise ratios, to sec how close serial concatenation can get

to theoretical Shannon bound,

● the comparison between SCCCS and PCCCS (turbo codes) for the same value of the decoding delay

imposed by the two schemes on the input bits,

For all simulated SCCCS, we have used purely random interleaves.

D[LAF’1’ February 18, 1998
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13.1 Sinl\datml coding gain versus numt)cr of iterations

Consider the rate 1/3 SCCC1 of Table III. It employs two 4-stat,e recursive convolutional encoders,

the first (outer code) with rate 1/2 and the second (inner cork) with rate 2/3, joined by an interleave

of Icngth N = 2048. Since the interleaver operates on coded sequences produced by the outer rate 1/2

encoder, its length of 2048 bits corresponds to a delay of 1024 information bits. The simulation results are

shown in Figure 17 in terms of bit error probability versus ~b/NO for a number of iterations NI ranging

from 1 to 7. The nice convergence of the decoding algorithm is manifest.
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Fig. 17. Simulated bit error probability versus the number of iterations for a rate 1/3 serially concatenated convolutional

code obtained concatenating a 4-state rate 1/2 recursive convolutional code and a 4-state rate 2/3 recursive convolutional

code. The concatenated code is the code SCCC1 of Table III. ‘llc decoding delay in terms of input bits due to the

interleaver is 1024

B.2 The effect of a nonrecursive inner encoder

The analysis of Section IV came to the conclusion that a non recursive inner encoder should yield

little interleaver gains. To confirm this theoretical prediction by simulation results, we plot in Figure 18

the bit error probability versus the input clecoding delay obtaiued by simulating the concatenated code

SCCC2 of Table 111. This code uses as inner encoder a 4-state nonrccursive encoder. lihe curves refer

February 18, 1998 l) flAI-V’
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to a signal-to-noise ratio ~jb/NO = 1.5 d[), and to a nun~her of iterat ioils NI ranging from ] to 10. IL is

widcnt that, the bit, error probability reaches the floor of 10- 5 for a decoding dday greater than or f!qual

to 1024, so that no interleave gain takes place beyoncl this point. For comparison, we report in Figure 19

the results obtained for the code SCCC3 of Table 3. The curves refer to a signal-to-noise ratio of 0.75 dB,

and show the inter] eaver gain predicted by the analysis.
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I I I
SCCC2 EJN~9 =. dB —clI —
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Input delay

Fig. 18. Simulated performance of concatenated code SCCC2 of Table 111. The bit error probability is plotted versus input

decoding delay for difierent number of iterations. The signal-to-noise ratio is 1.5 dB

B.3 Approaching the thcoret ical Shannon linlit

We show here the capabilities of SCCCS of yielding results close to the Shannon capacity limit. 10 this

purpose, we have chosen a rate 1/4 concatenated scheme with very long interleaver, corresponding to an

input decoding delay of 16,384. The constituent codes are 8-state codes: the outer encoder is nonrecursive,

and the inner encoder is a recursive encoder. Their generating matrices are

DRAF1’

G.(D) = [1+ D,1+D+D3]

Gi(D) z [1,
1+ D+D3

1+1) 1,
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Fig. 19. Simulated performance of concatenated code SCCC3 of Table III. The b]t error probability is plotted versus input

decoding delay for different number of iterations. The signal-to-noise ratio is 0.75 dB

respectively. Note the feedback polynomial (1 + D) in the generator rllatrix of the inner encoder, which

eliminates error events with odd input weights. The results in terms of bit error probability versus signal-

to-noise ratio for different number of iterations are presented in Fig, 20. They show that the decoding

algorithm works, at E~/No = —0.05 dI?, at 0.76 dB from the Shannon capacity limit (which is in this case

equal to -0.817 dB), with very limited complexity (remember that we are using two rate 1/2 codes with

8 states).

13,4 Con~parison between serially ancl parallel concatenated codes

Previous analytical results showed that serial concatenation can yield significantly higher interleaver

gains and steeper asymptotic slope of the error probability curves. To check if these advantages are

retained when the codes are iteratively decoded at very low signal-to-noise ratios, we have simulated tile

behavior of SCCCS and PCCCS in equal system conditions: the concatenated code rate is 1/3, the CCS

are 4-state recursive encoders (rates 1/2 + 1/2 for PCCCS, and rates 1/2 + 2/3 for the SCCCS), and

the decoding delays in terms of input bits are 256, 1024 and 16,384 rcspcctivt’ly, In Figure 21 we rt!port
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Fig. 20. Simulated performance of a rate 1/4 serially concatenated code obtained with two eight-state constituent codes

and an interleave yieIding an input decoding delay equal to 16384

the results, in terms of bit error probability versus signal-to-noise ratio, for the case of a decoding delay

equal to 256, after three and nine decoding iterations. As it can be seen from the curves, the PCCC

outperforms the SCCC for high values of the bit error probabilities. Below 10–3 (for nine iteration),

13 The improvement of SCCC withthe SCCC behaves significantly better, and do not present the floor .

respect to PCCC becomes more visible in Figure 22, which refers to a delay of 1024 and to three and seven

iterations of the decoding algorithm. For bit error probabilities lower than 10-2, the SCCC outperforms

PCCC. In particular, the absence of error floor is here patent. At 10-4, SCCC has an advantage of 0.7 dB

with seven iterations. Finally, in Figure 23, we report the results for an input decoding delay of 16,384 and

six and nine decoding iterations. In this case, tl]e crossover between PCCC and SCCC happens around

10-5. The advantage of SCCC at 10–6 is 0.5 d~ with nine iterations.

As a conclusion, we can say that the advantages obtained for signal-to-noise ratios above the cutoff rate,

where the union bounds can be safely applied, are retained also in the region between channel capacity and

13lt is cLiStO1llarY ill the tilrbo COdes literature to call “error f100r” what is actually a sensible change of slope of the

performance cunfe.
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c(ttoffrate. Only wlicn the systcm int.ercst focuses on high values of bit error probability (the threshold

depending on the int,er]eaver size) the PC(X are to be preferrecl. MXXk, however, present a floor to the

bit error probability, which, in the most favorable case seen above, lies around 10-6. This floor is absent,

or, at least, much lower, in the case of SCCC.

Finally, it must be recognized that the constituent codes design rules presented in %ction IV are

based on union bound considerations, and thus yield optimum SCCCS above the cutoff rate. For system

applications aiming at very low signal-tonoise ratios, close to the channel capacity (as, for example, in

deep-space communications), a general statement is that complex CCS should be avoided, and CCS with

low number of states (4-16) should be used. So far, finding the best codes to operate in the region of very

low signal-to-noise ratios, has been a matter of feeling dictated by experience and, literally, case by case

“crafting”.

1
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L 1 t I
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Fig. 21. Comparison of two rate 1/3 parallel concatenated convolutional code ancl serially concatenated convolutional code.

The parallel concatenated convolutional code is obtained concatenating two equal rate 1/2 4-state codes (first code in

‘1’able II); the serially concatenated convolutional code is the code SCCC1 of Table III. The curves refer to three and

nine iterations of the decoding algorithm and to an equal input decoding delay of 251$
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Fig. 22. Comparison of two rate 1/3 parallel concatenated convolutional code and serially concatenated convolutional code.

The parallel concatenated convolutional code is obtained concatenating two eclual rate 1/2 4 states codes (first code in

Table II); the serially concatenated convolutional code is the code SCCC1 of Table III. The curves refer to three and

seven iterations of the decoding algorithm and to an equal input decoding delay of 1024

VII. CONCLUSIONS

Serially concatenated codes with interleaver, a concept building on classical concatenated codes and

parallel concatenated codes known as “turbo codes”, whave been studied. They consist o the cascade of

an outer encoder, an interleaver permuting the outer code words bits, and an inner encocler whose input

words are the permuted outer code words. Upper bounds to the average maximum-likelihood bit error

probability of serially concatenated block and convolutional coding schemes have been derivecl. Da-d on

those bounds, we have derived design guidelines for the outer and inner codes that maximize the intt+rleaver

gain and the asymptotic slope of the error probability curves. It has been shown that the interlcaver gain,

defined as the factor that decreases the bit error probability as a function of the interleaver size, can he

made significantly higher than for turbo codes, Finally, a new, low-complexity iterative decoding algorithm

that yields performance close to the Shannon limit has bern illustrated. Extensive examples have been

presented, and comparisons with parallel concatenated convolutional codes have been performed. The
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Fix. 23. Comparison of two rate 1/3 parallel concatenated convolutional code and serially concatenated convolutionrd code.

The parallel concatenated convolutional code is obtained concatenating two equaf rate 1/2 4 states codes (first code in

Table II); the serially concatenated convolutional code is the code SCCC1 of Table III. The curves refer to six and nine

iterations of the decoding algorithm and to an equal input decoding delay of 16384

simulation results show that, in general, SCCCS have significantly lower changes of slope in the bit error

probability curves than PCCCS. On the other hand, if the bit error probabilities achievable by PCCCS

above the change of slope are sufficiently low, they can be reached by PCCCS at slightly lower signal-to-

noise ratios than by SCCCS. As a conclusion, PCCCS seem thus better suited to approaching capacity

limits for bit error probabilities above the error floor (10-6 - 10-7), whereas SCCCS are better suited to

provide near error free performance.
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Sergio Benedettoand Guido Montorsi, ` Ìterative decodirlg ofserially concatenated convofutiottal codes'', E/ectronic8

Letters, vol. 32, no. 13, pp. 1186-1187, June 1996.

Sergio Benedetto, E7ioBiglieri, andValentinoC astellani, DigitalT ransmission Theory, Prentice-Hall, New~ork,1987.

Sergio Benedetto and Guido Montorsi, “Unveilingt urb-codes: some restllts onparallel concatenated coding schemes'',

IEEE Tr.naactiona on lnjormaiion Theory, vol. 42, no.2, pp.409-429, Mar. 1996.

G. Poltyrev, “Boundson thedecoding error probahlity of binary linear codes via their spectra'', IEEE Transactions

on Information Theor~, pp. 1284 -1292, July 1994.

A,J.Viterbi and J. K. Omura, Principles ojDigifal Communication and Codinjr, McGlraw-Hill, New-York, 1979.

[11] Tolga M. Duman and Masoud Salehi, “New performance bounds for turbo codes”, in Proceedings oj GLOBECOM’97,

submitted, Phoenix, Arizona, Nov. 1997.
,

[12] A.J. Viterbi, A.M. Viterbi, and J. Nicolaz, “Perspectives on interleaved concatenated codes with iterative soft-output

decoding”, Private Communications, May 1997.

[131 Sergio Benedetto and Guido Mcmtorsi, “Design of parallel concatenated convolutional codes”, IEEE Transactions on

Communications, vol. 44, no. 5, pp. 591-600, May 1996.

[14] Dariush DivsaIar and Fabrizio Pollara, “Turbo Codes for PCS Applications”, in Proceedings OJ4CC’9S, Seattle,

Washington, June 1995.

[15] Sergio Benedetto and Guido Montorsi, “Average performance of parallel concatenated block codes”, Electronic. Letterw,

vol. 31, no. 3, pp. 156–158, Feb. 1995.

[16] G. D. Forney Jr., “Convolutional Codes I: Algebraic Structure”, IEEE Transactions on Information Theory, vol. IT-16,

pp. 720–738, Sept. 1970. ‘
P

[17] Dariush Divsalar and Robert J. McEliece, “Effective free distance of turbo codes”, Elec~nics Iettera, vol. 32, no. 5,

Feb. 1996. ‘

[18] Punya Thitimajshima, Systematic recursive convolutional codes a9Ld?heir application to parallel concatenation, PhD

thesis, Universit6 de Bretagne Occ~dentale, Dec. 1993, (in french).

[19] Sergio B&edetto, Dariush Divsalar, and Fabrizio Pollara, “A soft-input soft-output APP module for iterative decoding

of concatenated codes”, IEEE Communications Letter8, vol. 1, no: 1, pp. 22--24, Jan. 1997.

[20] L.R. Bahl, j. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate”,

IEEE Transaction~ on Infomnatio,t’ Theory, pp. 284-287, Mar. 1974.

[21] R.J. McEliece, “On the BC!JR trellis for linear block codes”, IEEE Transactions on Information Theory, vol. IT-42,

PP. 1072-1091, July 1996.

[22] Patrick Robertson, Emmanuelle Villebrun, and Peter Hoeher, “A Comparison of Optimal and Sub-Optin,al MAP

Decoding Algorithms operating in the Log Domain”, in Proceedings oj ICC’95, Seattle, Washington, June 1995, pp.

1009-1013.

[23] Sergio Bencdetto, Dariush Divsrdar, Guido Montorsi, and Fabrizio Pollara, “Soft-input soft-output building bl{,cks for

the construction and distributed iterative decoding of code networks”, European Transactions on 7’elecomn/ uvcations,
.

illvit eci paper, to be published, May 1997.

[24] Juachim Hagenauer, Elke Offer, and Lutz Papke, “Iterative decoding of binary block and convolutional COCICS”,IE1;E

7i,ansactions on lnjorination Theory, vol. 42, no. 2, pp. 429-445, M’ar. 1996.

February 18, 1!~9S


